

Intro GGT

Homework 1

Question 1. Let G be a group and $H \leq G$. Define an action of G on G/H by

$$g \cdot (aH) = (ga)H.$$

1. Prove that the above formula gives a well-defined group action.
2. Show that the action is transitive.
3. Compute the stabilizer of the coset $H \in G/H$; of any coset $aH \in G/H$.
4. Show that the action is faithful if and only if

$$\bigcap_{g \in G} gHg^{-1} = \{e\}.$$

5. Show that if H is a normal subgroup, then the action $G \curvearrowright G/H$ induces naturally an action $G/H \curvearrowright G/H$. What is this action?
6. Let $G \stackrel{\alpha}{\curvearrowright} X$ and $G \stackrel{\beta}{\curvearrowright} Y$ be two actions. A function $\varphi: X \rightarrow Y$ is called *G-equivariant* if $\varphi(gx) = g\varphi(x)$ for all $g \in G$ and $x \in X$. Show that $\text{Stab}_\alpha(x) \subset \text{Stab}_\beta(\varphi(x))$ for all $x \in X$.
7. Show that if $\varphi: X \rightarrow Y$ is G -equivariant and bijection, then φ^{-1} is also G -equivariant. In this case, φ is called a *G-action isomorphism*, and the two actions are said to be *isomorphic*.
8. Let $G \curvearrowright X$ be a transitive action and $x \in X$. Prove that the map
$$\begin{aligned} \varphi: G/\text{Stab}(x) &\rightarrow X \\ g\text{Stab}(x) &\mapsto g \cdot x \end{aligned}$$
is a G -action isomorphism.
9. Conclude that every transitive action of G is isomorphic to an action of the form $G \curvearrowright G/H$.
10. Show that two actions $G \curvearrowright G/H$ and $G \curvearrowright G/K$ are isomorphic if and only if H and K are conjugate in G .